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LETTER TO THE EDITOR 

Quantized resistivity from statistical reaction theory 
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Department of Physics, Michigan State University, East Lansing, MI 48823, USA 

Received 5 November 1990 

Abstract. The Landauer formula for quantized resistivit) i s  derived from basic statistical 
reaction theory. 

The recent observation of quantized conductivity [l], beautifully confirming Landauer’s 
result [2], may give interest to a simplified derivation of the formula based on statistical 
reaction theory. The central result of the theory is the transition state formula for decay 
rates. According to the formula, the rate Wat which an equilibrated quantum system A 
decays is 

WA = z T / ( 2 z h  dnddE) .  (1) 

Here the ZT are the transmission coefficients in the channels, summed over channel 
states, and dnA/dE is the density of levels in system A. Channels are defined as the 
distinct states of the system at a fixed value of the reaction coordinate. This is usually at 
a barrier top, although the validity of the theory does not depend on the existence of a 
potential barrier. The transmission coefficients depend only on the energy of the system 
and take values 1 or 0 in the classical limit for energetically allowed or forbidden decays. 
Equation (1) expresses the RRKM transition state theory of chemical reactions [3]. It is 
also well known in nuclear physics, having first been applied in 1937 to neutron evap- 
oration [4]. 

For the present application, I imagine two capacitor plates joined by a quantum 
resistor. The rate of flow of electrons from one plate to the other will be calculated, 
assuming that each plate emits electrons (through the resistor) as a decaying quantum 
system. The electrons are assumed to move in a common single-particle potential, in 
which case equation (1) can be applied to the single-particle states to find the current. 
For electrons leaving plate A this reads 

IA e 2 WARE, - PA) (2) 
n 

where thesumisover electronstatesof A. In thisequationfistheoccupation probability 
of those states, depending on the chemical potential p. Substituting in equation (1) and 
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replacing the sum by an integral, it is immediately apparent that the density-of-states 
factor converts the integration variable to energy, 

(3) 

The net current is the difference in currents from the two directions. Since the 
transmission coefficient does not depend on the direction of flow, the only difference in 
currents is due to the chemical potentials. This difference may be expressed in terms of 
the voltage difference V ,  ,uA - pB = eV. The result is 

(f(e - pA)  - f ( ~  - pB)) - e z  ( Z 7 / 2 z h ) V .  

The last equality holds whenfis a step function on the scale of variations in T ( E ) .  To get 
the final result. note that in the absence of magnetic fields the channels will be open in 
pairs (spin up and spin down). Neglecting quantum barrier transmission effects, the 
minimum non-vanishing conductivity G occurs when IT = 2 ,  giving G = e2/nh. 
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